

OPC Data Logger Case Study

How Unifi used the OPC Data Logger as part of their data logging

strategy

Page 2 of 35

Table of Contents

INTRODUCTION 3
Intended Audience 3
Purpose of this document 3
DATA LOGGING SCENARIO 4

DATA DESIGN 5
Data Normalization - Separating Data into Multiple Tables 5
Data Table Design 6

How will data be stored? 6
CONFIGURING THE OPC DATA LOGGER 8
Configuration Process 8
Modifying the items data within Excel 9
Importing the items into the OPC Data Logger 13
Configuring a Detail mode presentation formatter 16
Connecting to the Database 18
Collecting the data 4 times a day 26

Step 1 Configuring the Triggers 26
Step 2 Configuring the Group to use the Triggers 27

Last Step – Connecting the Data Collection to the Data Storage 29
FURTHER OPTIMIZATION – STORED PROCEDURES VS SQL INJECTION 31
Stored Procedure 31
EXAMPLE REPORTS 34
Retrieving values logged for an item between a date-range 34
Retrieving a count of logged values for all items between a date-range 35

Page 3 of 35

Introduction

The following is a case study of how Brad Bright of Unifi used the OPC Data Logger to solve his data

logging needs.

Intended Audience

This document is intended for people who need to log OPC data to a database, plain and simple.

This document assumes no prior database experience.

Purpose of this document

This document is intended to provoke design decisions prior to implementation.

This document is intended to help facilitate the easiest possible OPC Data Logger configuration, while

leveraging maximum database efficiency which will result in:

• Less data being logged

• More accurate data being logged

• Maximum reporting capabilities.

This document will outline a simple data logging scenario along with step-by-step instructions that will

accomplish a solution.

Page 4 of 35

Data Logging Scenario

Brad had a need to log data to an ORACLE database for later analysis. Brad outlined the following

requirements:

1. Approx. 30 devices required their data to be logged.

2. Each device has approx. 30 items that needed to be logged.

3. All data, from all devices needed to be collected 4 times per day.

4. The logged data can be analyzed later (not in real time)

5. Would like to see the data in a tabular report, i.e. showing the data between time-frames.

6. Ability to see & exclude any questionable/bad data during a specific time-frame.

Page 5 of 35

Data Design

Brad realized that his needs were such that he could end-up with large and complex configuration settings

that could be confusing to other users, so Brad started out by designing his database applying widely

adopted database principles and best practices including data-normalization and the use of Stored

Procedures to maximize his data efficiency as well as maximizing his Oracle database performance.

Data Normalization - Separating Data into Multiple Tables

The first step is to identify and normalize the data.1

Items/Tags

Logged Data
Points

Machines

In this case, Brad separated the data into 3 respective areas:

• Machines – to store information about each machines whose data is being logged

• The Items/Tags – which will be related to the Machines

• The logged data points – and we will relate them to the Items

1 Database normalization is not in the scope of this document.

Page 6 of 35

Data Table Design

In this simple design, Brad opted to separate the logged values from the underlying items themselves.

Here is a look at these simple tables:

MACHINE_TABLE ITEM_TABLE MACHINE_VALUES
Field Name Data Type Field Name Data Type Field Name Data Type
id numeric id numeric id numeric
Name Text Item_name text item_id numeric
 Machine_id numeric item_value variant
 item_quality numeric
 item_timestamp datetime

In this design, the values could be logged to the MACHINE_VALUES table without having to log the name

of the item for each value logged, which would save space in the database. Furthermore, because of the

direct relationship between the value and the item, much more efficient database queries will be possible.

How will data be stored?

First, the machines and items tables had to be pre-populated. The machine table stores information about

the machines:

MACHINE_TABLE
Id Item_Name
1 Machine 1
2 Machine 2
3 Machine 3

Also, the ITEM_TABLE had to be populated before we begin logging. For example:

ITEM_TABLE
Id Item_Name
1 Channel1.Device1.Tag1
2 Channel1.Device1.Tag2
3 Channel1.Device1.Tag3

Page 7 of 35

Once the MACHINE_TABLE and ITEM_TABE database tables contained the data, the OPC Data Logger

could now log the values into the MACHINE_VALUES as follows:

MACHINE_VALUES
Id Item_Id Item_Value Item_Quality Item_Timestamp
1 1 10 192 1/1/2008 12:01:01
2 1 20 192 1/1/2008 12:01:01
3 2 30 192 1/1/2008 12:01:01
4 1 40 192 1/1/2008 12:01:01
5 1 50 192 1/1/2008 12:01:01
6 3 60 192 1/1/2008 12:01:01

Note: This time the name of the item is NOT being logged (yellow column) but its index within the

other/related table is being logged instead.

Page 8 of 35

Configuring the OPC Data Logger

Configuration Process

Before configuring the OPC Data Logger, Brad already configured the database with the previously

documented tables, and the MACHINE_TABLE and ITEM_TABLE were pre-populated with the data.

Because Brad already had the names of the items configured within his TOPServer OPC Server, he simply

exported them to a *.CSV file and then opened file within Excel. Brad then modified the data so as to be

able to import the items straight into the database, for example:

item_name machine_id
Channel1.Device1.Tag1 1
Channel1.Device1.Tag2 1
Channel1.Device1.Tag3 1
Channel1.Device1.Tag4 2
Channel1.Device1.Tag5 2
Channel1.Device1.Tag6 2
Channel1.Device1.Tag7 3
Channel1.Device1.Tag8 3
Channel1.Device1.Tag9 3

Brad then further configure the data such that he was able to import this *.CSV file straight into the OPC

Data Logger, eliminating the need for him having to manually configure the items.

Page 9 of 35

Modifying the items data within Excel

Next, Brad modified the items table within Excel that were previously used to import into database.

Page 10 of 35

In order to import this data into the OPC Data Logger, Brad needed to modify the data by first adding the

extra columns needed. Also, in order to tie the relationship between the data being logged and the items

table within the database, Brad opted to store the Machine_Id inside the Item Description column for

each item.

Next, Brad had to fill-in the empty cell values for the first row:

Page 11 of 35

Once the first row contained some default values, the remaining empty rows needed to be configured

also. This was done quickly and easily by using the Fill-down option within Excel. The first key was to

select the entire range of data that was added, in this example cell C2 to K2. But, also to expand this

range so that it covers the blank cells beneath this range as shown below:

Next, Brad chose the Fill > Down option:

Page 12 of 35

The values were then copied onto each row as shown here:

Brad then saved this sheet as a *.CSV file by simply choosing FILE -> SAVE AS and then picking *.CSV as

shown here:

Page 13 of 35

Importing the items into the OPC Data Logger

Once the items were defined within the *.CSV file, Brad then used the Item Import feature to add these

items to the OPC Data Logger configuration:

1. Opened the OPC Data Logger, then opened the Project containing the group being modified.

Page 14 of 35

2. Highlight (or add) the group, and then open its Properties.

3. Clicked on the Items tab and then opened the Import option at the bottom of the window,

choosing the Import From File sub-menu finally clicking on the DataLogger (*.CSV) option:

Page 15 of 35

4. A dialog prompted for the file to import:

5. The items were then imported:

Note: That Item’s id in the database is stored within the Description column.

Page 16 of 35

Configuring a Detail mode presentation formatter

Brad then configured just one detail mode formatter needed to correctly log the items (including the

reference to the Item ID).

1. Created a new Detail mode presentation by simply right-clicking on the Detail Mode icon in the

main application tree-view:

Page 17 of 35

2. Configured the detail mode to resemble the following:

3. Clicked OK to save and close this window.

Page 18 of 35

Connecting to the Database

Now, the database had been configured, the items had been imported into the database and OPC Data

Logger, and defined the Detail mode presentation. Brad was able to complete the configuration process

by binding the detail-mode formatter to the database table. Once this was done, data can be logged.

1. Right-click on the Data Storage node within the treeview and choose the Data Storage Wizard:

2. The wizard will begin. Press Next to bypass the welcome screen.

Page 19 of 35

3. Next, the ORACLE database type was chosen from the list.

Then click the Next button.

Page 20 of 35

4. Pick the Detail presentation that was previously created:

Then click the Next button.

Page 21 of 35

5. In the case of connecting to an ORACLE database, the following window will be displayed

requiring the entry of a valid Service Name.

(This does not apply to any other type of database.)

Simply click the Next button to proceed.

Page 22 of 35

6. Specify how to log into the database.

In this case we will be using the scott\tiger default account installed by Oracle.

Click the NEXT button.

Page 23 of 35

7. Test your database configuration:

It is important that the test is successful for the wizard to proceed.

Click the Next button to continue.

Page 24 of 35

8. Now to pick MACHINE_VALUES table from the list of available tables, because this is the table

where data will be logged:

Click the Next button to continue.

Page 25 of 35

9. Now to configure the bindings, that is, the relationship between the item values within the OPC

Data Logger and the fields within the selected table.

You must click the Validate button to verify that your configuration is valid.

Press the Next button to proceed.

10. The wizard will summarize what you have just done, simply click the Finish button and then save

your OPC Data Logger configuration.

Page 26 of 35

Collecting the data 4 times a day

The OPC Data Logger required 2 configuration steps in order to log data 4 times a day:

1. Setting up Triggers

2. Configuring the group to read based on the triggers

Step 1 Configuring the Triggers

Brad needed to log data 4 times a day, at specific times of the day. The other choice could have been to

log every 6 hours. Because strict times were going to be used, a Scheduled Trigger was created for each

time of the day a reading needed to be made. Here’s an example of a scheduled trigger scheduled to

execute at 3:30 pm.

3 other triggers were created, 1 for each of the other times of the day.

Page 27 of 35

Step 2 Configuring the Group to use the Triggers

Now that the triggers had been setup, the next step was to configure the GROUP to use them. This also

was a 2-step configuration:

1. Specify that triggers initiate when to read the items.

2. Specify which triggers will cause the reading to take place.

Step 1 – Specifying the reading to take place when a trigger is raised.

Open the group properties and click on the Read tab. Click the Triggered Reads option:

Page 28 of 35

Step 2 – Specifying which triggers to observe

Within the Group property pages, click the Triggers tab and then add the scheduled triggers previously

defined. Each trigger was specified to execute the One-shot Read Now within the Effect column:

Page 29 of 35

Last Step – Connecting the Data Collection to the Data Storage

Now that the data collection has been defined, the items added, presentation format defined, and the

database connection defined, the last step is to bring it all together.

1. Open or create a new Project under the Projects node in the OPC Data Logger tree-view:

TIP: Whenever you are creating a new project, use the Project Wizard as it dramatically simplifies

the configuration process and ensures the configuration is valid and correct.

Page 30 of 35

2. Open the Project properties window and click on the Log To tab.

At the bottom of the window click on the Add button, and you will see the available data stores

available, in this case we have our only Oracle database storage component called

OracleDatabaseLogger.

Click OK to save and close the screen.

That’s it! Brad was now ready to log data.

Page 31 of 35

Further Optimization – Stored Procedures vs SQL Injection

So far, Brad used direct SQL injection to log the data to the MACHINE_VALUES table See step 8 on Page 24. This is not

optimal. Brad knew that this is a slower method of logging data because it meant the OPC Data Logger was

sending SQL statement to the database,which then must be parsed and validated by the database server

prior to compilation and final execution. This would happen every time data would be sent to the

database.

The obvious step was to avoid the parsing/compilation needed by the database server each time data was

being logged. This can was accomplished by creating a Stored Procedure.

Stored Procedure

A stored procedure is a module that is compiled and ran within the database engine itself.

The stored procedure (sproc) was created using the Wizard tool within the Oracle Enterprise Manager:

Page 32 of 35

Page 33 of 35

Selecting the Procedure option and then hitting the &Create button opened a dialog where you could

specify a name for the sproc and the actual SQL statement itself, as in:

Name: Insert_Machine_Values

SQL:
(
 item_id in numeric,
 item_value in numeric,
 item_quality in numeric,
 item_timestamp in date
)
as
begin
INSERT INTO "SCOTT"."MACHINE_VALUES" (
 "ITEM_ID",
 "ITEM_VALUE",
 "ITEM_QUALITY",
 "ITEM_TIMESTAMP")
VALUES (
 item_id,
 item_value,
 item_quality,
 TO_DATE(item_timestamp, 'dd-Mon-yyyy HH:MI:SS AM'))

end;

Note: The text with the yellow-background represents the arguments that are required by this sproc.

Page 34 of 35

Example Reports

To complete this case-study, we will take a look at some example SQL Queries that could be used for

reporting.

NOTE: The following examples are purely for educational purposes and do not reflect those used by Brad

or Unifi.

NOTE: The following SQL queries were creating against an ORACLE 10i database server; consequently,

the exact syntax may not be compatible with other database engines.

Retrieving values logged for an item between a date-range

select
 scott.machine_tags.tagname,
 scott.machine_values.item_value,
 scott.machine_values.item_quality,
 scott.machine_values.item_timestamp
from
 scott.machine_values, scott.machine_tags
where
 scott.machine_values.item_id = scott.machine_tags.tag_id
 and
 scott.machine_tags.tagname like 'channel1.device1.tag1'

;

This produces the following output:

TAGNAME ITEM_VALUE ITEM_QUALITY ITEM_TIME
-- ---------- ------------ ---------
channel1.device1.tag1 10 192 01-JAN-08
channel1.device1.tag1 20 192 01-JAN-08
channel1.device1.tag1 30 0 01-JAN-08

Page 35 of 35

Retrieving a count of logged values for all items between a date-range

select
 scott.machine_tags.tagname,
 scott.machine_values.item_timestamp,
 count (*)
from
 scott.machine_values,
 scott.machine_tags
where
 scott.machine_values.item_id = scott.machine_tags.tag_id
 and
 scott.machine_values.item_timestamp
 between TO_DATE('1-JAN-2008 12:00:00 AM', 'dd-Mon-yyyy HH:MI:SS AM')
 and TO_DATE('1-FEB-2008 12:00:00 AM', 'dd-Mon-yyyy HH:MI:SS AM')
group by
 scott.machine_tags.tagname,
 scott.machine_values.item_timestamp
;

This produces the following output:

TAGNAME ITEM_TIME COUNT(*)
-- --------- ----------
channel1.device1.tag1 01-JAN-08 3
channel1.device1.tag2 01-JAN-08 2
channel1.device1.tag3 01-JAN-08 1

	Introduction
	Intended Audience
	Purpose of this document

	Data Logging Scenario
	Data Design
	Data Normalization - Separating Data into Multiple Tables
	Data Table Design
	How will data be stored?

	Configuring the OPC Data Logger
	Configuration Process
	Modifying the items data within Excel
	Importing the items into the OPC Data Logger
	Configuring a Detail mode presentation formatter
	Connecting to the Database
	Collecting the data 4 times a day
	Step 1 Configuring the Triggers
	Step 2 Configuring the Group to use the Triggers
	Step 1 – Specifying the reading to take place when a trigger
	Step 2 – Specifying which triggers to observe

	Last Step – Connecting the Data Collection to the Data Stora

	Further Optimization – Stored Procedures vs SQL Injection
	Stored Procedure

	Example Reports
	Retrieving values logged for an item between a date-range
	Retrieving a count of logged values for all items between a

