

OPC Data Logger Case Study

Efficient Database Data Logging

Software Toolbox
International Corporate
Headquarters, USA

148A East Charles Street
Matthews, NC 28105 USA
www.softwaretoolbox.com

TOLL FREE: 888-665-3678
GLOBAL: 704-849-2773
FAX: 704-849-6388

Table of Contents

INTRODUCTION	4
Intended Audience	4
Purpose of this document	4
DATA LOGGING SCENARIO	5
DATA DESIGN	6
Common Problem – The Quickest/Easiest Approach	6
Separating Data into Multiple Tables	7
Data Table Design	7
How will data be stored?	8
What kind of reports can we obtain using this design?	8
Are there any other benefits to this design?	9
CONFIGURING THE OPC DATA LOGGER	10
Configuration Process	10
Modifying the items data within Excel	11
Importing the items into the OPC Data Logger	15
Configuring a Detail mode presentation formatter	18
Connecting to your Database	20
Last Step – Connecting the Data Collection to the Data Storage	28
FURTHER OPTIMIZATION – STORED PROCEDURES VS SQL INJECTION	30

EXAMPLE REPORTS **31**

Retrieving values logged for an item between a date-range **31**

Retrieving a count of logged values for all items between a date-range **32**

Introduction

Intended Audience

This document is intended for people who need to log OPC data to a database. Plain and simple.

This document assumes no prior database experience.

Purpose of this document

This document is intended to provoke design decisions prior to implementation.

This document is intended to help facilitate the easiest possible OPC Data Logger configuration, while leveraging maximum database efficiency which will result in:

- Less data being logged
- More accurate data being logged
- Maximum reporting capabilities.

This document will outline a simple data logging scenario along with step-by-step instructions that will accomplish a solution.

Data Logging Scenario

Let's begin by listing our requirements:

1. We have several items/tags that we want to log.
2. We want to analyze the logged data later (not in real time)
3. We want to see the data logged in a table format, showing the data between time-frames.
4. We want to see if any data was questionable/bad during a specific time-frame.

Data Design

Common Problem – The Quickest/Easiest Approach

Quite often, what seems like the quickest and easiest approach is the one that most people go with... let's see what this typically looks like for most people.

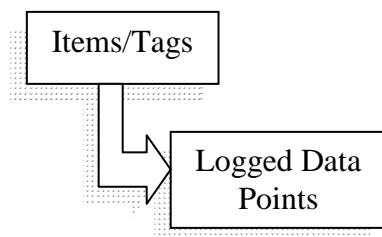
We will log our data to a single table. Pay close attention to the data within the table:

Item_Name	Item_Value	Item_Quality	Item_Timestamp
Channel1.device.1.Tag1	10	192	1/1/2008 12:01:01
Channel1.device.1.Tag1	20	192	1/1/2008 12:01:01
Channel1.device.1.Tag2	30	192	1/1/2008 12:01:01
Channel1.device.1.Tag1	40	192	1/1/2008 12:01:01
Channel1.device.1.Tag1	50	192	1/1/2008 12:01:01
Channel1.device.1.Tag3	60	192	1/1/2008 12:01:01

The name of each item that has been logged is approx. 22 characters wide. If we look at the above table we can see that *Channel1.Device1.Tag1* has been logged 4 times. That means that we have logged a total of:

22 x 4 characters = 88 characters

Obviously, as more data is logged, this consumption of space will increase. Obviously this is not the best use of space.


Analysis capabilities will be hindered if we want to search for all of the data points for a particular item, as the database will have to query the entire database table marking a huge performance penalty.

Separating Data into Multiple Tables

Now that we have seen the most commonly seen problem, and that we also have our requirements, we can begin our data design.

The first step is to identify and normalize the data. Database normalization will out the scope of this document, but we will show you an example below:

In this case, we have separated the data into 2 respective areas:

- The Items/Tags – and we will relate them to the Machines
- The logged data points – and we will relate them to the Items

Data Table Design

In our simple design, we have opted to separate our logged values from the underlying items themselves.

Here is a look at these simple tables:

ITEM_TABLE		MACHINE_VALUES	
Field Name	Data Type	Field Name	Data Type
id	numeric	id	numeric
Item_name	text	item_id	numeric
		item_value	variant
		item_quality	numeric
		item_timestamp	datetime

In the above case, we have defined a relationship between the values being logged against the known item in the ITEM_TABLE.

How will data be stored?

In our first example we stored all of our data into a single table. Now we are opting to store the data in multiple tables. This does also mean that our ITEM_TABLE must be populated before we begin logging. For example:

ITEM_TABLE	
<i>Id</i>	<i>Item_Name</i>
1	Channel1.Device1.Tag1
2	Channel1.Device1.Tag2
3	Channel1.Device1.Tag3

Now that our Items database table contains our data, we can log our values into the MACHINE_VALUES as follows:

MACHINE_VALUES				
<i>Id</i>	<i>Item_Id</i>	<i>Item_Value</i>	<i>Item_Quality</i>	<i>Item_Timestamp</i>
1	1	10	192	1/1/2008 12:01:01
2	1	20	192	1/1/2008 12:01:01
3	2	30	192	1/1/2008 12:01:01
4	1	40	192	1/1/2008 12:01:01
5	1	50	192	1/1/2008 12:01:01
6	3	60	192	1/1/2008 12:01:01

Note: this time the name of the item is NOT being logged, instead, its index within the other/related table is being logged instead.

What kind of reports can we obtain using this design?

Here are some examples:

1. a list of values for any item between a specific time-frame
2. a list of values for a specific item or set of items
3. a list of items, grouped by their quality code, by item or group of items
4. total number of data points logged, by item or group of items
5. average of data points logged, by item or group of items

Are there any other benefits to this design?

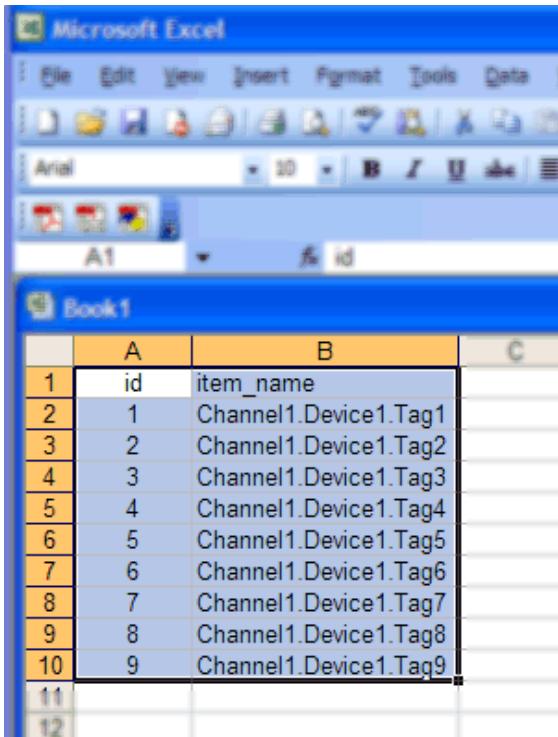
Yes, several.

1. If you need to add more items to log, then add them into the ITEM_TABLE first, and then configure the OPC Data Logger accordingly. No other database schema changes are needed.
2. If you no longer need to log any particular item(s), then simply stop logging them from the OPC Data Logger. The data within the database can remain.

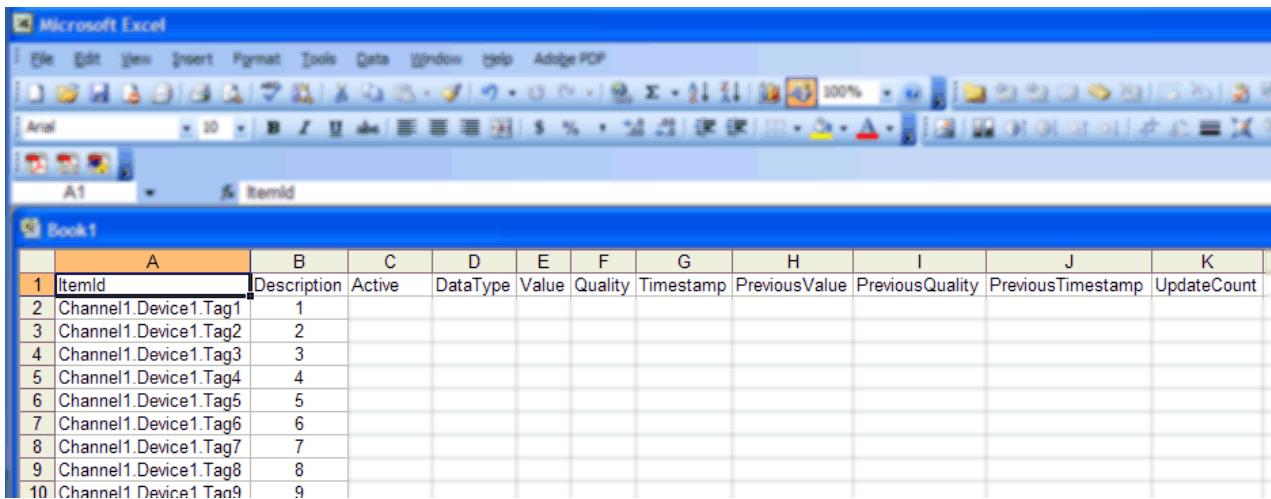
Configuring the OPC Data Logger

Configuration Process

Before configuring the OPC Data Logger, your database should be already configured with the previously documented tables, and the ITEM_TABLE already pre-populated with the names of the items you will be logging.


Assuming the items already exist within the database, simply export the contents of the ITEM_TABLE into a *.CSV file and open the file within Microsoft Excel (or any application that will allow you to modify the data).

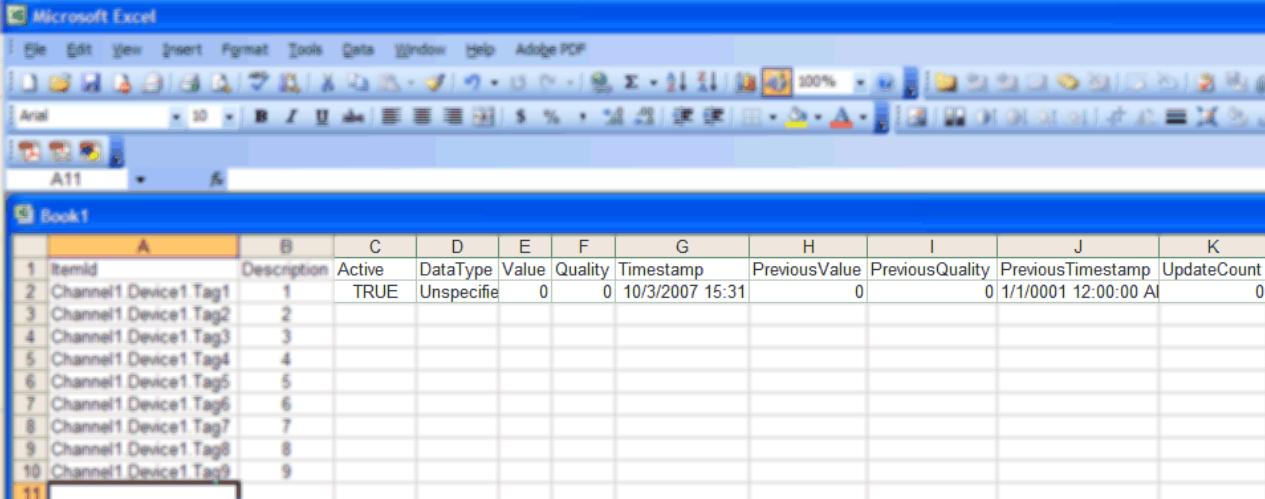
We will now configure the data such that we will be able to import this *.CSV file straight into the OPC Data Logger, which will prevent us from having to manually configure our items.


Modifying the items data within Excel

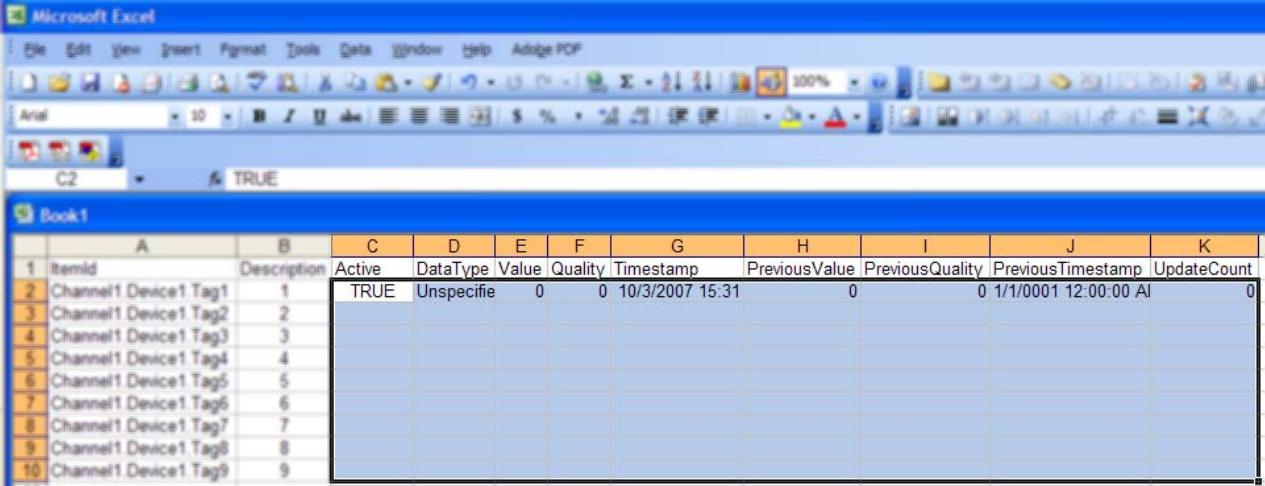
The next step assumes that the items have been exported from the database and are now loaded within Excel.

	A	B	C
1	id	item_name	
2	1	Channel1.Device1.Tag1	
3	2	Channel1.Device1.Tag2	
4	3	Channel1.Device1.Tag3	
5	4	Channel1.Device1.Tag4	
6	5	Channel1.Device1.Tag5	
7	6	Channel1.Device1.Tag6	
8	7	Channel1.Device1.Tag7	
9	8	Channel1.Device1.Tag8	
10	9	Channel1.Device1.Tag9	
11			
12			

In order to import this data into the OPC Data Logger, we will need to modify the data by first adding the extra columns that are needed:

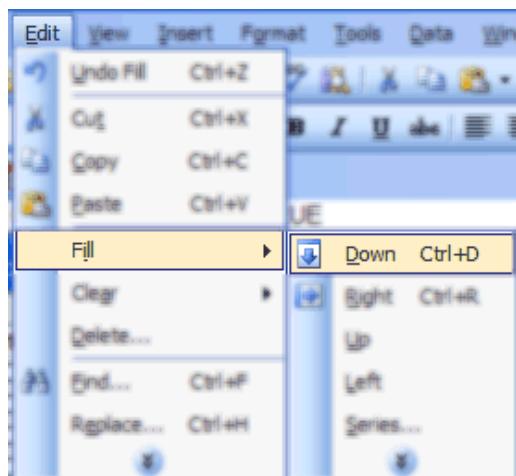

	A	B	C	D	E	F	G	H	I	J	K
1	ItemId	Description	Active	DataType	Value	Quality	Timestamp	PreviousValue	PreviousQuality	PreviousTimestamp	UpdateCount
2	Channel1.Device1.Tag1	1									
3	Channel1.Device1.Tag2	2									
4	Channel1.Device1.Tag3	3									
5	Channel1.Device1.Tag4	4									
6	Channel1.Device1.Tag5	5									
7	Channel1.Device1.Tag6	6									
8	Channel1.Device1.Tag7	7									
9	Channel1.Device1.Tag8	8									
10	Channel1.Device1.Tag9	9									

Important:


The **DESCRIPTION** column actually contains the index (id) for the record within the database.

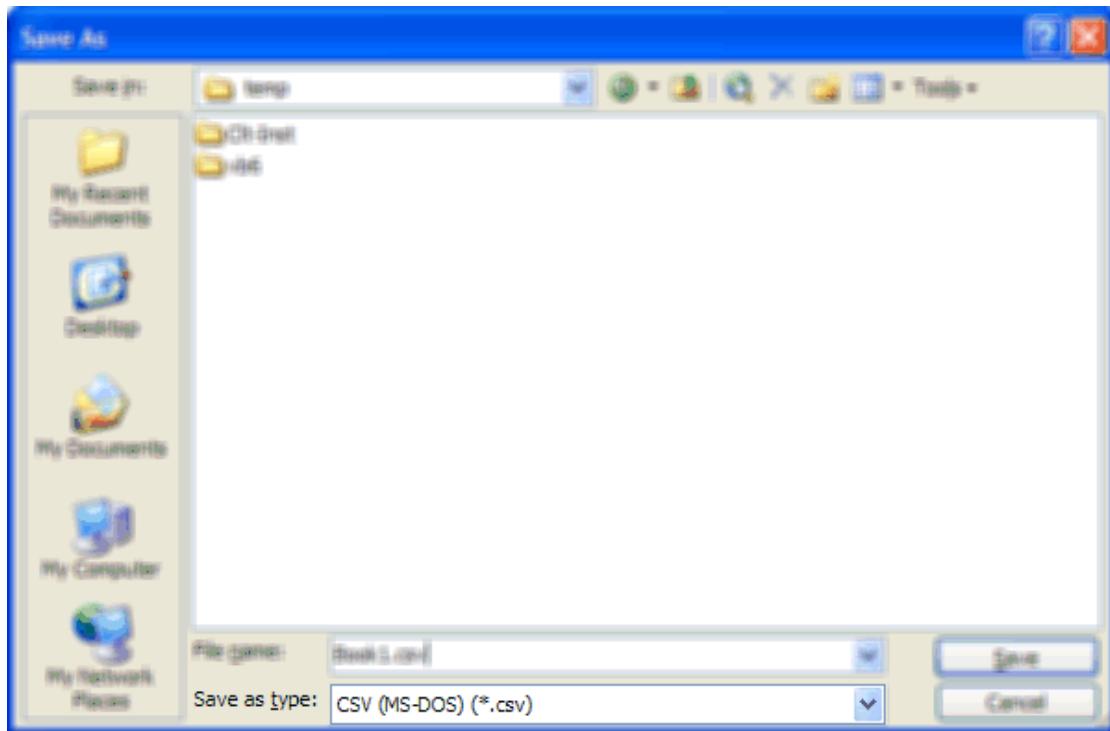
Now we will fill-in the empty cell values for the first row:

	A	B	C	D	E	F	G	H	I	J	K
1	ItemId	Description	Active	DataType	Value	Quality	Timestamp	PreviousValue	PreviousQuality	PreviousTimestamp	UpdateCount
2	Channel1.Device1.Tag1	1	TRUE	Unspecified	0	0	10/3/2007 15:31	0	0	01/1/0001 12:00:00	AI 0
3	Channel1.Device1.Tag2	2									
4	Channel1.Device1.Tag3	3									
5	Channel1.Device1.Tag4	4									
6	Channel1.Device1.Tag5	5									
7	Channel1.Device1.Tag6	6									
8	Channel1.Device1.Tag7	7									
9	Channel1.Device1.Tag8	8									
10	Channel1.Device1.Tag9	9									
11											

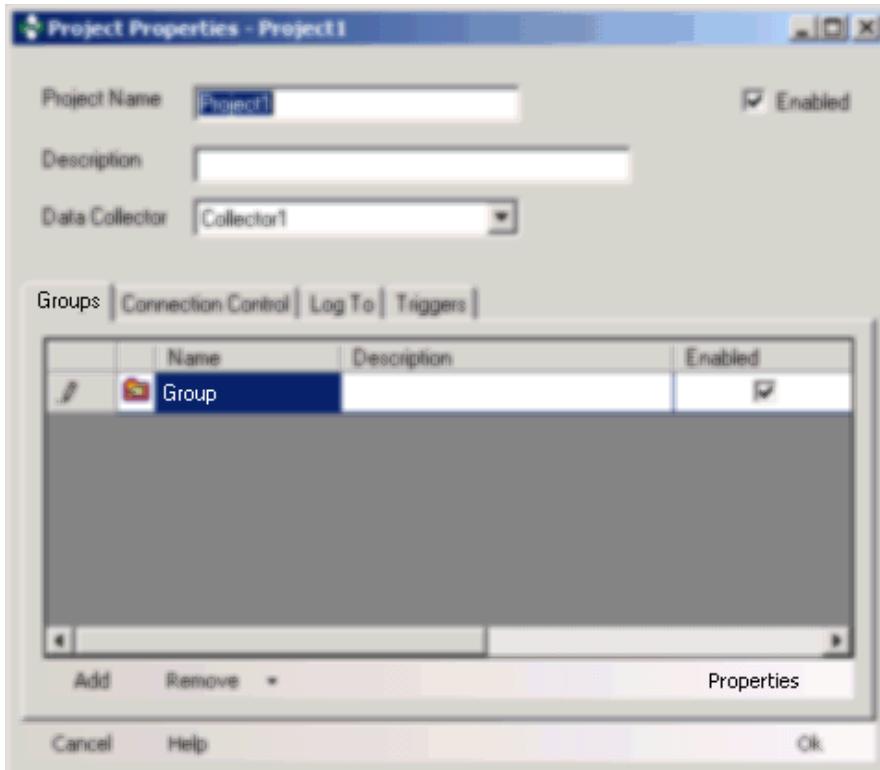

Now we will copy all of these values we have just added to the cells in the remaining empty rows. We can do this quickly and easily by using the **Fill-down** option within Excel. The first key is to select the entire range of data that we added, in this case cell **C2** to **K2**. But, we also need to expand this range so that it covers the blank cells beneath this range as shown below:

	A	B	C	D	E	F	G	H	I	J	K
1	ItemId	Description	Active	DataType	Value	Quality	Timestamp	PreviousValue	PreviousQuality	PreviousTimestamp	UpdateCount
2	Channel1.Device1.Tag1	1	TRUE	Unspecified	0	0	10/3/2007 15:31	0	0	01/1/0001 12:00:00	AI 0
3	Channel1.Device1.Tag2	2									
4	Channel1.Device1.Tag3	3									
5	Channel1.Device1.Tag4	4									
6	Channel1.Device1.Tag5	5									
7	Channel1.Device1.Tag6	6									
8	Channel1.Device1.Tag7	7									
9	Channel1.Device1.Tag8	8									
10	Channel1.Device1.Tag9	9									

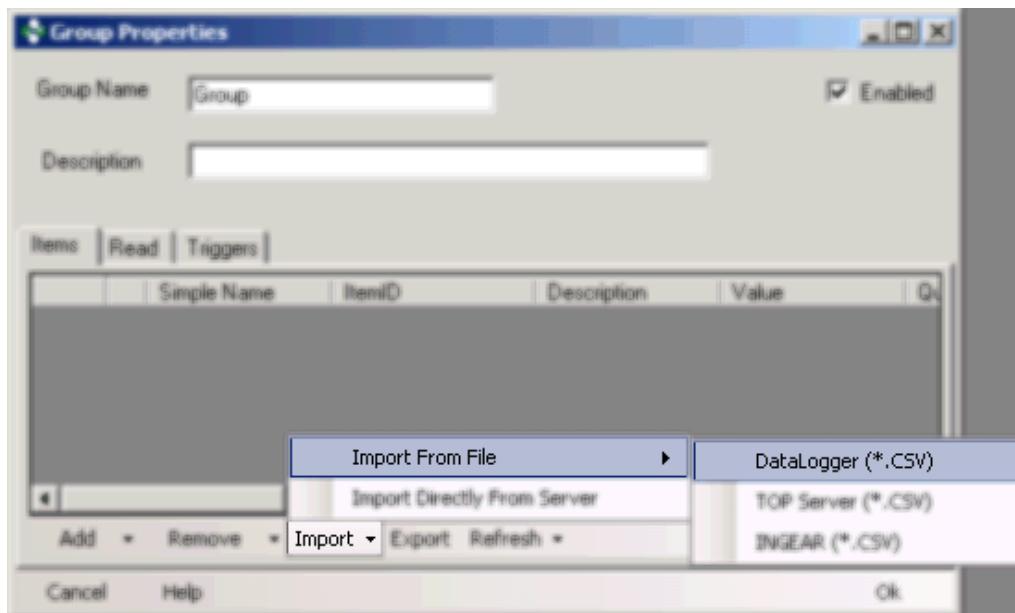
Now choose Fill-down:


The values will now be copied onto each row as shown here:

ItemId	Description	Active	DataType	Value	Quality	Timestamp	PreviousValue	PreviousQuality	PreviousTimestamp	UpdateCount
2	Channel1.Device1 Tag1	1	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
3	Channel1.Device1 Tag2	2	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
4	Channel1.Device1 Tag3	3	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
5	Channel1.Device1 Tag4	4	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
6	Channel1.Device1 Tag5	5	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
7	Channel1.Device1 Tag6	6	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
8	Channel1.Device1 Tag7	7	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
9	Channel1.Device1 Tag8	8	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0
10	Channel1.Device1 Tag9	9	Unspecified	0	0	10/3/2007 15:31	0	0	1/1/0001 12:00:00 AI	0

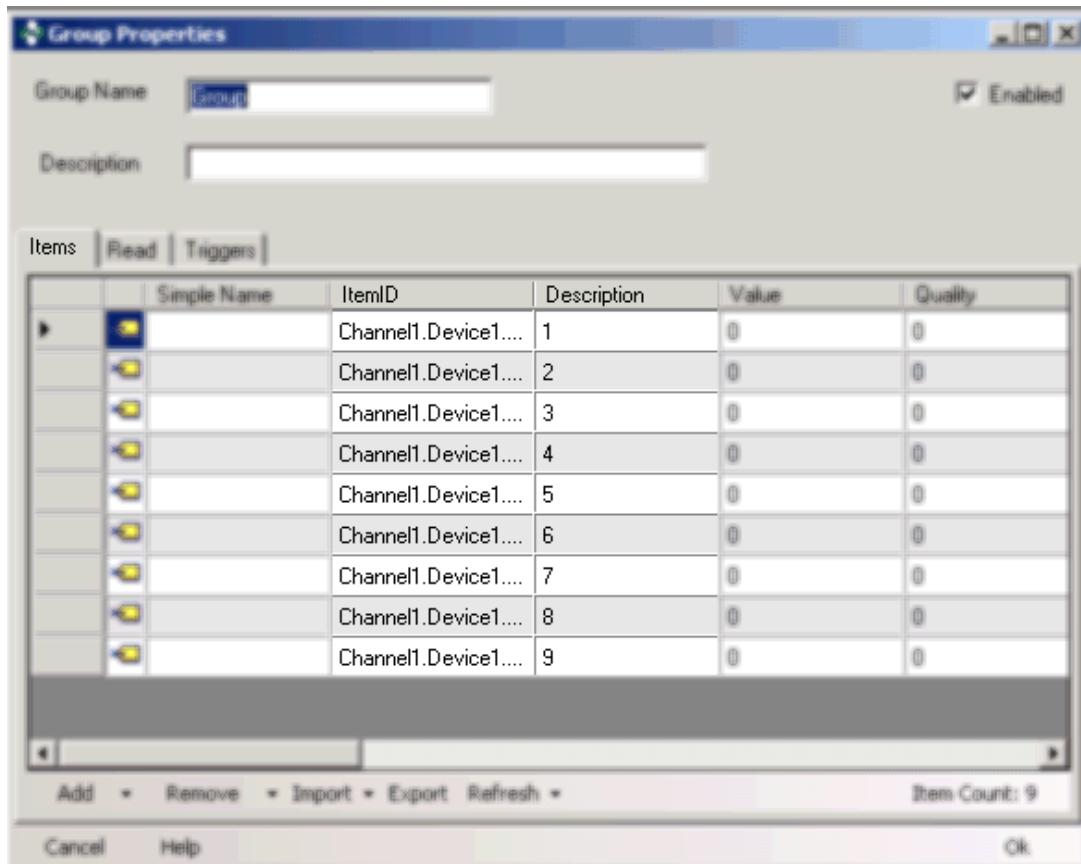


Now save this sheet as a *.CSV file by simply choosing FILE -> SAVE AS and then picking *.CSV as shown here:


Importing the items into the OPC Data Logger

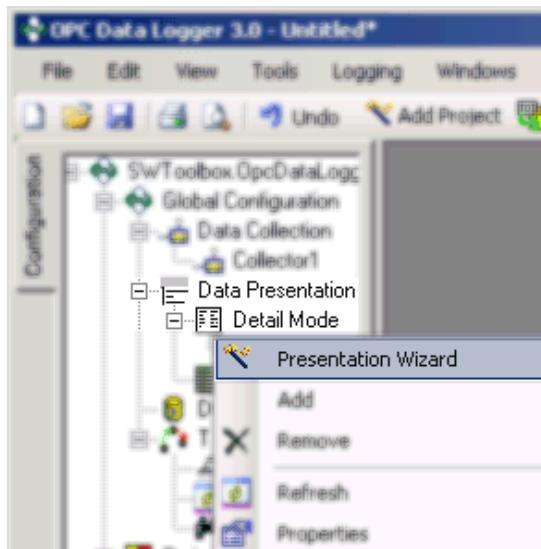
1. Open the OPC Data Logger, and then open your Project containing the group we will be modifying.

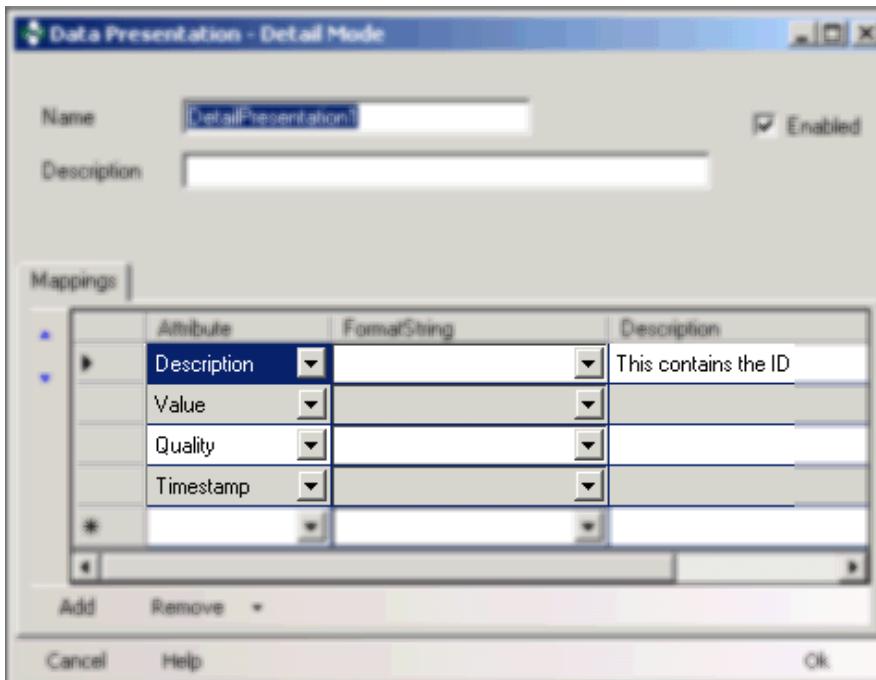
2. Highlight (or add) the group, and then open its **Properties**.


3. Click on the **Items** tab and then open the **Import** option at the bottom of the window, choosing the **Import From File** sub-menu finally clicking on the **DataLogger (*.CSV)** option:

4. A dialog will prompt you to choose the file to import. Locate your file and then click OK.

5. The items should now be imported:

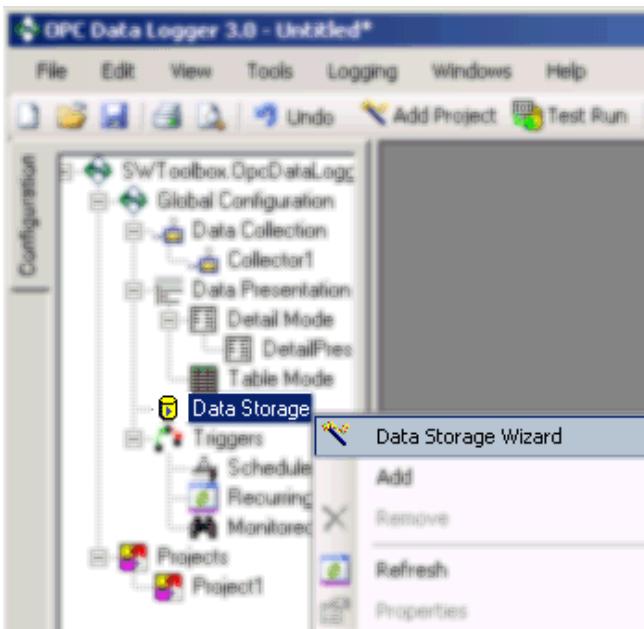

Note that Item's id in the database is stored within the **Description** column.


Configuring a Detail mode presentation formatter

We need to configure just one detail mode formatter that will correctly log our items (including the reference to the Item ID).

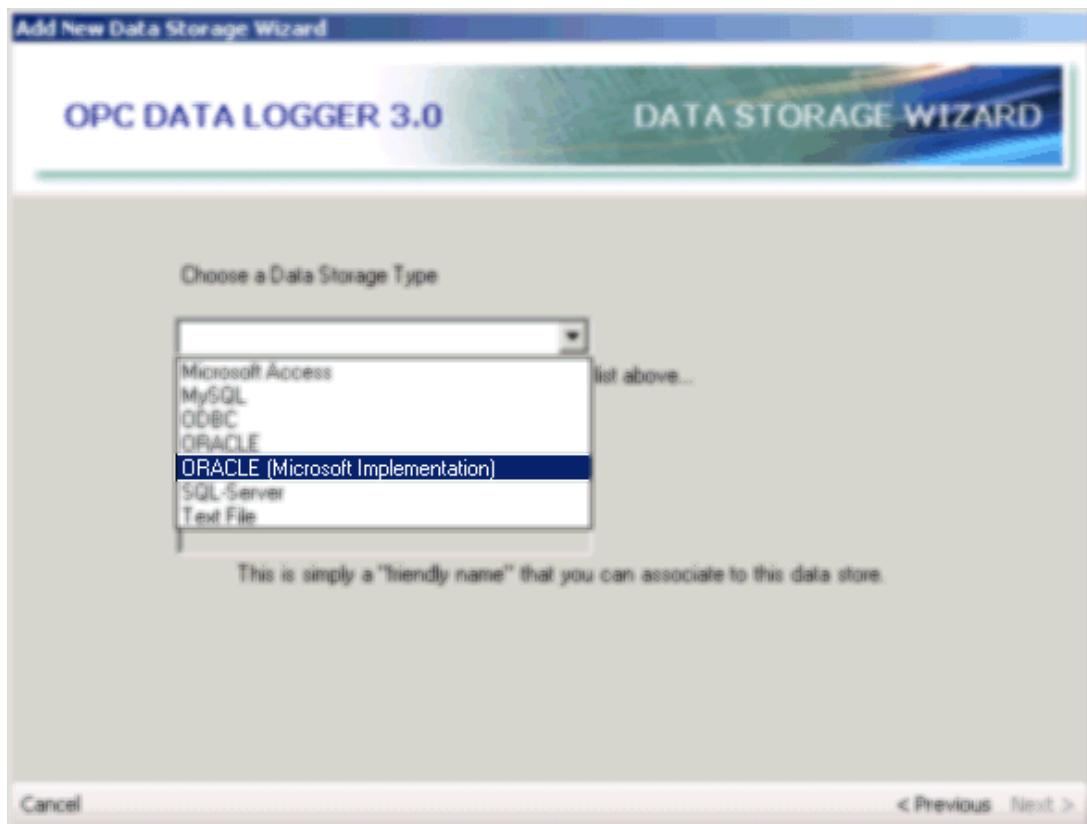
1. Create a new Detail mode presentation by simply right-clicking on the **Detail Mode** icon in the main application tree-view:

2. Now configure the detail mode to resemble the following:

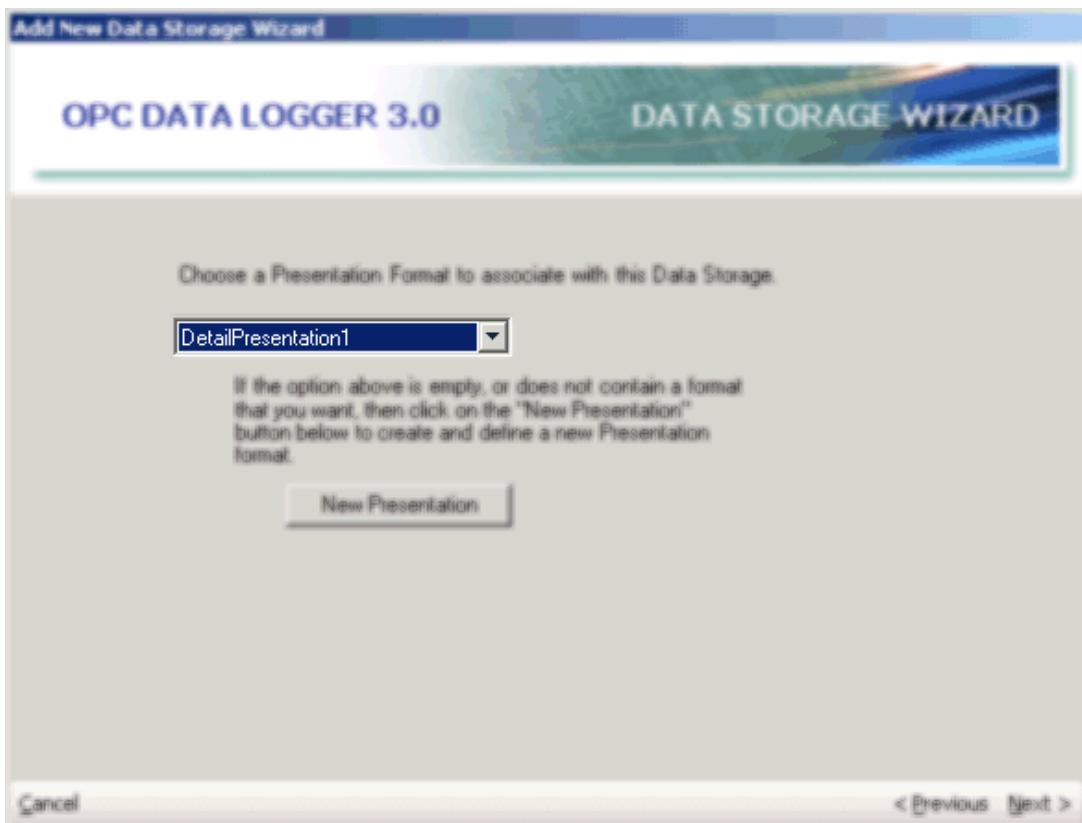

3. Click OK to save and close this window.

Connecting to your Database

Now that the database has been configured, the items have been imported into the database and OPC Data Logger, and we have defined our Detail mode presentation. We can now complete the configuration process by binding our detail-mode formatter to the database table. Once this is done, we can begin logging data.


1. Right-click on the **Data Storage** node within the treeview and choose the **Data Storage Wizard**:

2. The wizard will begin. Press **Next** to bypass the welcome screen.


3. Next, choose your database type from the list. In this example we will be connecting to a remote ORACLE database:

Then click the **Next** button.

4. Pick the Detail presentation that was previously created:

Then click the **Next** button.

5. In the case of connecting to an ORACLE database, the following window will be displayed requiring the entry of a valid Service Name. This does not apply to any other type of database:

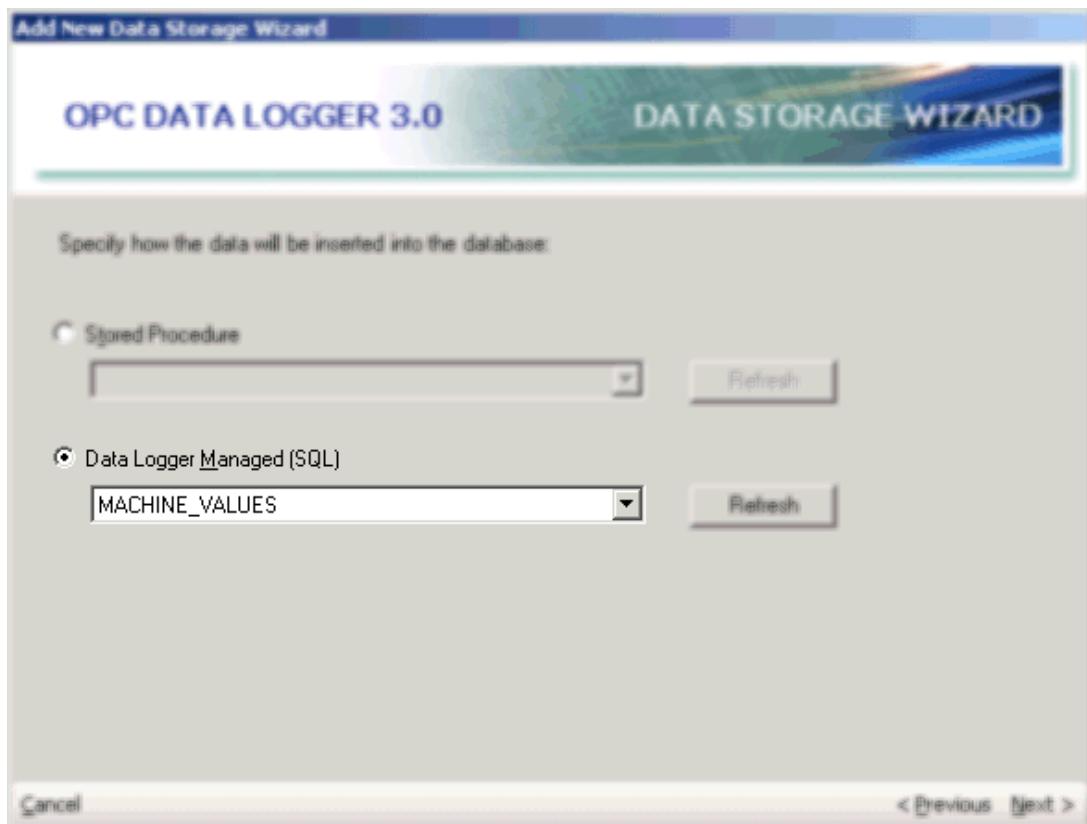
Simply click the **Next** button to proceed.

6. Now specify how you will log into the database:

In this case we will be using the **scott\ tiger** default account installed by Oracle.

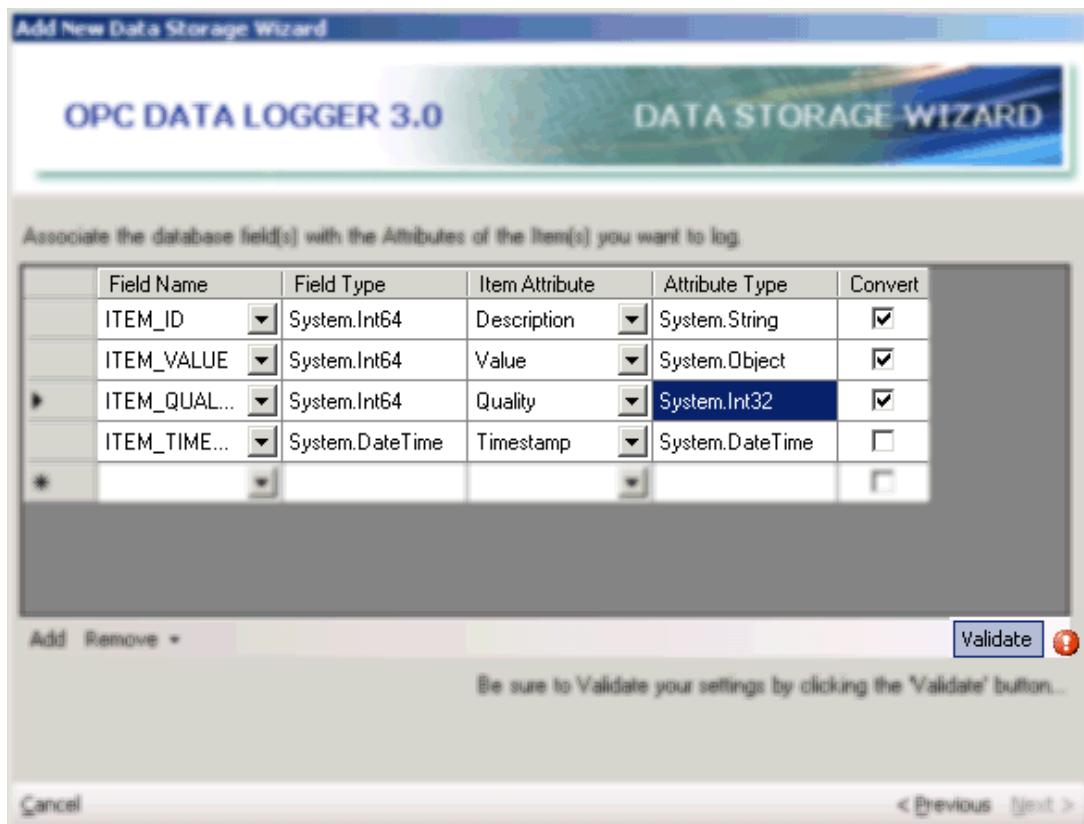
Click the **NEXT** button.

7. Now you will need to test your configuration:



It is important that the test is successful for the wizard to proceed.

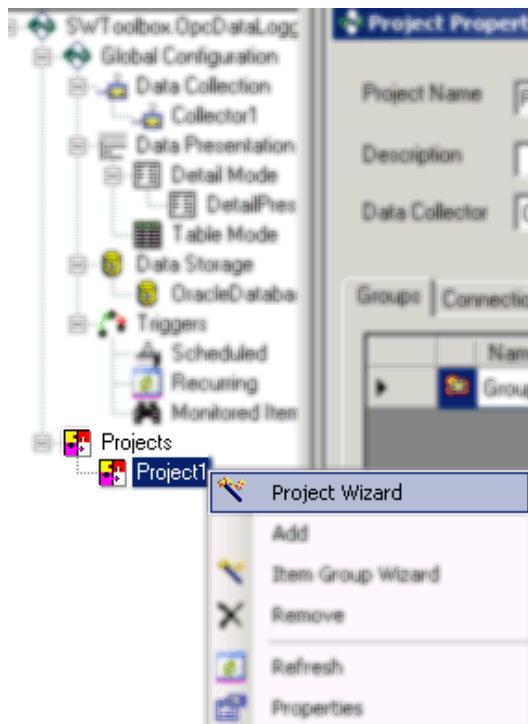
Click the **Next** button to continue.


- Now we will pick our MACHINE_VALUES table from the list of available tables, because this is the table where we will log our data to:

Click the **Next** button to continue.

- Now we must configure our bindings, that is, the relationship between the item values within the OPC Data Logger and the fields within our selected table:

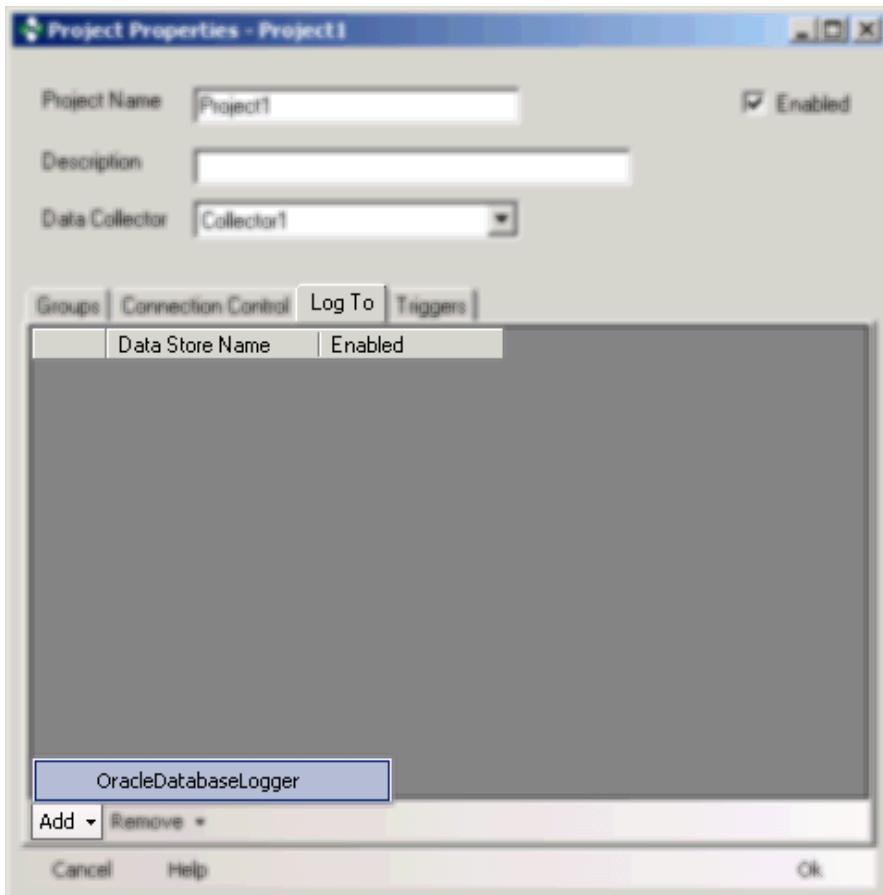
You must click the **Validate** button to verify that your configuration is valid.


Press the **Next** button to proceed.

- The wizard should now summarize what you have just done, simply click the **Finish** button and then save your OPC Data Logger configuration.

Last Step – Connecting the Data Collection to the Data Storage

Now that the data collection has been defined, the items added, presentation format defined, and the database connection defined, we are now ready to bring it all together.


1. Open or create a new **Project** under the **Projects** node in the OPC Data Logger tree-view:

TIP: Whenever you are creating a new project, use the **Project Wizard** as it dramatically simplifies the configuration process and ensures the configuration is valid and correct.

2. Open the **Project** properties window and click on the **Log To** tab.

At the bottom of the window click on the **Add** button, and you will see the available data stores available, in this case we have our only Oracle database storage component called *OracleDatabaseLogger*.

Click **OK** to save and close the screen.

That's it! We're ready to log data.

Further Optimization – Stored Procedures vs SQL Injection

In this example we have used direct SQL injection to log the data to the MACHINE_VALUES table. See step 8 on Page 26. This is not optimal. This is a slower method of logging data. The reason being is that we are sending a SQL statement to the database, which then must be parsed and validated by the database server prior to compilation and final execution. This must happen on every time we send data to the database.

The obvious step would to try to avoid the parsing/compilation needed by the database server each time we log data. This can be accomplished by creating a **Stored Procedure**.

Creating a Stored Procedure is outside the scope of this document as the procedure is similar (but not the same) between all of the databases that support them.

Example Reports

To complete this case-study, we will take a look at some simple SQL Queries for reporting.

NOTE: The following SQL queries were creating against an ORACLE 10i database server; consequently, the exact syntax may not be compatible with other database engines.

Retrieving values logged for an item between a date-range

```
select
  scott.machine_tags.tagname,
  scott.machine_values.item_value,
  scott.machine_values.item_quality,
  scott.machine_values.item_timestamp
from
  scott.machine_values, scott.machine_tags
where
  scott.machine_values.item_id = scott.machine_tags.tag_id
  and
  scott.machine_tags.tagname like 'channel1.device1.tag1'
;
```

This produces the following output:

TAGNAME	ITEM_VALUE	ITEM_QUALITY	ITEM_TIME
channel1.device1.tag1	10	192	01-JAN-08
channel1.device1.tag1	20	192	01-JAN-08
channel1.device1.tag1	30	0	01-JAN-08

Retrieving a count of logged values for all items between a date-range

```

select
  scott.machine_tags.tagname,
  scott.machine_values.item_timestamp,
  count (*)
from
  scott.machine_values,
  scott.machine_tags
where
  scott.machine_values.item_id = scott.machine_tags.tag_id
  and
  scott.machine_values.item_timestamp
    between TO_DATE('1-JAN-2008 12:00:00 AM', 'dd-Mon-yyyy HH:MI:SS AM')
      and    TO_DATE('1-FEB-2008 12:00:00 AM', 'dd-Mon-yyyy HH:MI:SS AM')
group by
  scott.machine_tags.tagname,
  scott.machine_values.item_timestamp
;
  
```

This produces the following output:

TAGNAME	ITEM_TIME	COUNT(*)
channel1.device1.tag1	01-JAN-08	3
channel1.device1.tag2	01-JAN-08	2
channel1.device1.tag3	01-JAN-08	1

