

OPC Data Logger Case Study

Efficient Database Data Logging

Page 2 of 32

Table of Contents

INTRODUCTION 4

Intended Audience 4

Purpose of this document 4

DATA LOGGING SCENARIO 5

DATA DESIGN 6

Common Problem – The Quickest/Easiest Approach 6

Separating Data into Multiple Tables 7

Data Table Design 7
How will data be stored? 8
What kind of reports can we obtain using this design? 8
Are there any other benefits to this design? 9

CONFIGURING THE OPC DATA LOGGER 10

Configuration Process 10

Modifying the items data within Excel 11

Importing the items into the OPC Data Logger 15

Configuring a Detail mode presentation formatter 18

Connecting to your Database 20

Last Step – Connecting the Data Collection to the Data Storage 28

FURTHER OPTIMIZATION – STORED PROCEDURES VS SQL INJECTION 30

Page 3 of 32

EXAMPLE REPORTS 31

Retrieving values logged for an item between a date-range 31

Retrieving a count of logged values for all items between a date-range 32

Page 4 of 32

Introduction

Intended Audience

This document is intended for people who need to log OPC data to a database. Plain and simple.

This document assumes no prior database experience.

Purpose of this document

This document is intended to provoke design decisions prior to implementation.

This document is intended to help facilitate the easiest possible OPC Data Logger configuration, while

leveraging maximum database efficiency which will result in:

• Less data being logged

• More accurate data being logged

• Maximum reporting capabilities.

This document will outline a simple data logging scenario along with step-by-step instructions that will

accomplish a solution.

Page 5 of 32

Data Logging Scenario

Let’s begin by listing our requirements:

1. We have several items/tags that we want to log.

2. We want to analyze the logged data later (not in real time)

3. We want to see the data logged in a table format, showing the data between time-frames.

4. We want to see if any data was questionable/bad during a specific time-frame.

Page 6 of 32

Data Design

Common Problem – The Quickest/Easiest Approach

Quite often, what seems like the quickest and easiest approach is the one that most people go with… let’s

see what this typically looks like for most people.

We will log our data to a single table. Pay close attention to the data within the table:

Item_Name Item_Value Item_Quality Item_Timestamp

Channel1.device.1.Tag1 10 192 1/1/2008 12:01:01

Channel1.device.1.Tag1 20 192 1/1/2008 12:01:01

Channel1.device.1.Tag2 30 192 1/1/2008 12:01:01

Channel1.device.1.Tag1 40 192 1/1/2008 12:01:01

Channel1.device.1.Tag1 50 192 1/1/2008 12:01:01

Channel1.device.1.Tag3 60 192 1/1/2008 12:01:01

The name of each item that has been logged is approx. 22 characters wide. If we look at the above table

we can see that Channel1.Device1.Tag1 has been logged 4 times. That means that we have logged a total

of:

22 x 4 characters = 88 characters

Obviously, as more data is logged, this consumption of space will increase. Obviously this is not the best

use of space.

Analysis capabilities will be hindered if we want to search for all of the data points for a particular item,

as the database will have to query the entire database table marking a huge performance penalty.

Page 7 of 32

Separating Data into Multiple Tables

Now that we have seen the most commonly seen problem, and that we also have our requirements, we

can begin our data design.

The first step is to identify and normalize the data. Database normalization will out the scope of this

document, but we will show you an example below:

Items/Tags

Logged Data
Points

In this case, we have separated the data into 2 respective areas:

• The Items/Tags – and we will relate them to the Machines

• The logged data points – and we will relate them to the Items

Data Table Design

In our simple design, we have opted to separate our logged values from the underlying items themselves.

Here is a look at these simple tables:

ITEM_TABLE MACHINE_VALUES

Field Name Data Type Field Name
Data
Type

id numeric id numeric
Item_name text item_id numeric
 item_value variant
 item_quality numeric
 item_timestamp datetime

In the above case, we have defined a relationship between the values being logged against the known

item in the ITEM_TABLE.

Page 8 of 32

How will data be stored?

In our first example we stored all of our data into a single table. Now we are opting to store the data in

multiple tables. This does also mean that our ITEM_TABLE must be populated before we begin logging.

For example:

ITEM_TABLE
Id Item_Name
1 Channel1.Device1.Tag1
2 Channel1.Device1.Tag2
3 Channel1.Device1.Tag3

Now that our Items database table contains our data, we can log our values into the MACHINE_VALUES as

follows:

MACHINE_VALUES
Id Item_Id Item_Value Item_Quality Item_Timestamp
1 1 10 192 1/1/2008 12:01:01
2 1 20 192 1/1/2008 12:01:01
3 2 30 192 1/1/2008 12:01:01
4 1 40 192 1/1/2008 12:01:01
5 1 50 192 1/1/2008 12:01:01
6 3 60 192 1/1/2008 12:01:01

Note: this time the name of the item is NOT being logged, instead, its index within the other/related table

is being logged instead.

What kind of reports can we obtain using this design?

Here are some examples:

1. a list of values for any item between a specific time-frame

2. a list of values for a specific item or set of items

3. a list of items, grouped by their quality code, by item or group of items

4. total number of data points logged, by item or group of items

5. average of data points logged, by item or group of items

Page 9 of 32

Are there any other benefits to this design?

Yes, several.

1. If you need to add more items to log, then add them into the ITEM_TABLE first, and then

configure the OPC Data Logger accordingly. No other database schema changes are needed.

2. If you no longer need to log any particular item(s), then simply stop logging them from the OPC

Data Logger. The data within the database can remain.

Page 10 of 32

Configuring the OPC Data Logger

Configuration Process

Before configuring the OPC Data Logger, your database should be already configured with the previously

documented tables, and the ITEM_TABLE already pre-populated with the names of the items you will be

logging.

Assuming the items already exist within the database, simply export the contents of the ITEM_TABLE into

a *.CSV file and open the file within Microsoft Excel (or any application that will allow you to modify the

data).

We will now configure the data such that we will be able to import this *.CSV file straight into the OPC

Data Logger, which will prevent us from having to manually configure our items.

Page 11 of 32

Modifying the items data within Excel

The next step assumes that the items have been exported from the database and are now loaded within

Excel.

In order to import this data into the OPC Data Logger, we will need to modify the data by first adding the

extra columns that are needed:

Page 12 of 32

Important:

The DESCRIPTION column actually contains the index (id) for the record within the database.

Now we will fill-in the empty cell values for the first row:

Now we will copy all of these values we have just added to the cells in the remaining empty rows. We can

do this quickly and easily by using the Fill-down option within Excel. The first key is to select the entire

range of data that we added, in this case cell C2 to K2. But, we also need to expand this range so that it

covers the blank cells beneath this range as shown below:

Page 13 of 32

Now choose Fill-down:

The values will now be copied onto each row as shown here:

Page 14 of 32

Now save this sheet as a *.CSV file by simply choosing FILE -> SAVE AS and then picking *.CSV as shown

here:

Page 15 of 32

Importing the items into the OPC Data Logger

1. Open the OPC Data Logger, and then open your Project containing the group we will be

modifying.

2. Highlight (or add) the group, and then open its Properties.

Page 16 of 32

3. Click on the Items tab and then open the Import option at the bottom of the window, choosing

the Import From File sub-menu finally clicking on the DataLogger (*.CSV) option:

4. A dialog will prompt you to choose the file to import. Locate your file and then click OK.

Page 17 of 32

5. The items should now be imported:

Note that Item’s id in the database is stored within the Description column.

Page 18 of 32

Configuring a Detail mode presentation formatter

We need to configure just one detail mode formatter that will correctly log our items (including the

reference to the Item ID).

1. Create a new Detail mode presentation by simply right-clicking on the Detail Mode icon in the

main application tree-view:

Page 19 of 32

2. Now configure the detail mode to resemble the following:

3. Click OK to save and close this window.

Page 20 of 32

Connecting to your Database

Now that the database has been configured, the items have been imported into the database and OPC

Data Logger, and we have defined our Detail mode presentation. We can now complete the configuration

process by binding our detail-mode formatter to the database table. Once this is done, we can begin

logging data.

1. Right-click on the Data Storage node within the treeview and choose the Data Storage Wizard:

2. The wizard will begin. Press Next to bypass the welcome screen.

Page 21 of 32

3. Next, choose your database type from the list. In this example we will be connecting to a remote

ORACLE database:

Then click the Next button.

Page 22 of 32

4. Pick the Detail presentation that was previously created:

Then click the Next button.

Page 23 of 32

5. In the case of connecting to an ORACLE database, the following window will be displayed

requiring the entry of a valid Service Name. This does not apply to any other type of database:

Simply click the Next button to proceed.

Page 24 of 32

6. Now specify how you will log into the database:

In this case we will be using the scott\tiger default account installed by Oracle.

Click the NEXT button.

Page 25 of 32

7. Now you will need to test your configuration:

It is important that the test is successful for the wizard to proceed.

Click the Next button to continue.

Page 26 of 32

8. Now we will pick our MACHINE_VALUES table from the list of available tables, because this is the

table where we will log our data to:

Click the Next button to continue.

Page 27 of 32

9. Now we must configure our bindings, that is, the relationship between the item values within the

OPC Data Logger and the fields within our selected table:

You must click the Validate button to verify that your configuration is valid.

Press the Next button to proceed.

10. The wizard should now summarize what you have just done, simply click the Finish button and

then save your OPC Data Logger configuration.

Page 28 of 32

Last Step – Connecting the Data Collection to the Data Storage

Now that the data collection has been defined, the items added, presentation format defined, and the

database connection defined, we are now ready to bring it all together.

1. Open or create a new Project under the Projects node in the OPC Data Logger tree-view:

TIP: Whenever you are creating a new project, use the Project Wizard as it dramatically simplifies

the configuration process and ensures the configuration is valid and correct.

Page 29 of 32

2. Open the Project properties window and click on the Log To tab.

At the bottom of the window click on the Add button, and you will see the available data stores

available, in this case we have our only Oracle database storage component called

OracleDatabaseLogger.

Click OK to save and close the screen.

That’s it! We’re ready to log data.

Page 30 of 32

Further Optimization – Stored Procedures vs SQL Injection

In this example we have used direct SQL injection to log the data to the MACHINE_VALUES table. See

step 8 on Page 26. This is not optimal. This is a slower method of logging data. The reason being is that

we are sending a SQL statement to the database, which then must be parsed and validated by the

database server prior to compilation and final execution. This must happen on every time we send data to

the database.

The obvious step would to try to avoid the parsing/compilation needed by the database server each time

we log data. This can be accomplished by creating a Stored Procedure.

Creating a Stored Procedure is outside the scope of this document as the procedure is similar (but not the

same) between all of the databases that support them.

Page 31 of 32

Example Reports

To complete this case-study, we will take a look at some simple SQL Queries for reporting.

NOTE: The following SQL queries were creating against an ORACLE 10i database server; consequently,

the exact syntax may not be compatible with other database engines.

Retrieving values logged for an item between a date-range

select
 scott.machine_tags.tagname,
 scott.machine_values.item_value,
 scott.machine_values.item_quality,
 scott.machine_values.item_timestamp
from
 scott.machine_values, scott.machine_tags
where
 scott.machine_values.item_id = scott.machine_tags.tag_id
 and
 scott.machine_tags.tagname like 'channel1.device1.tag1'

;

This produces the following output:

TAGNAME ITEM_VALUE ITEM_QUALITY ITEM_TIME
-- ---------- ------------ ---------
channel1.device1.tag1 10 192 01-JAN-08
channel1.device1.tag1 20 192 01-JAN-08
channel1.device1.tag1 30 0 01-JAN-08

Page 32 of 32

Retrieving a count of logged values for all items between a date-range

select
 scott.machine_tags.tagname,
 scott.machine_values.item_timestamp,
 count (*)
from
 scott.machine_values,
 scott.machine_tags
where
 scott.machine_values.item_id = scott.machine_tags.tag_id
 and
 scott.machine_values.item_timestamp
 between TO_DATE('1-JAN-2008 12:00:00 AM', 'dd-Mon-yyyy HH:MI:SS AM')
 and TO_DATE('1-FEB-2008 12:00:00 AM', 'dd-Mon-yyyy HH:MI:SS AM')
group by
 scott.machine_tags.tagname,
 scott.machine_values.item_timestamp
;

This produces the following output:

TAGNAME ITEM_TIME COUNT(*)
-- --------- ----------
channel1.device1.tag1 01-JAN-08 3
channel1.device1.tag2 01-JAN-08 2
channel1.device1.tag3 01-JAN-08 1

